1. What is Vector?
Created: August 3, 2021 10:56 AM
Reviewed: No
- Hadamard product (= elementwise product = 성분곱)
In Numpy, elementwise product equals *****
- norm
norm is equal to the distance from the origin (0, 0).
1)
= sum(변화량의 절댓값)
ex. Robust Training, Lasso Regression
Regularization: This speeds up the dimensionality reduction and removes unimportant parts. Unlike -norm, the influence of an unnecessary variable can be made 0.

2)
= Euclidean distance ( 유클리드 거리 )
In Numpy, It is equal to numpy.linalg.norm
ex. Laplace approximation, Ridge Regression
Regularization: -norm makes the influence of insignificant variables close to zero.

- The distance between vectors
The distance between vectors = The distance between two points of vectors
벡터 사이의 거리 = 두 점 사이의 거리

- The angle between two vectors
Calculating the angle is only possible with -norm.
The dot product is the value adjusted to fit the length of the orthographic projection to .
The dot product can be used to measure the similarity of two vectors.
각도를 계산하는 것은 -norm에서만 가능하다.
내적은 정사영의 길이를 에 맞게 조정한 값이다.
내적은 두 벡터의 similarity를 측정할 때 사용 가능하다.
- Dot product = inner product = 내적
Numpy: np.inner
'AI Tech - Naver Boostcamp > 1. Python & AI Math' 카테고리의 다른 글
3. Gradient Descent (Basic) (0) | 2021.08.09 |
---|---|
2. What is matrix? (0) | 2021.08.09 |
댓글